49,521 research outputs found

    New transformation of Wigner operator in phase space quantum mechanics for the two-mode entangled case

    Full text link
    As a natural extension of Fan's paper (arXiv: 0903.1769vl [quant-ph]) by employing the formula of operators' Weyl ordering expansion and the bipartite entangled state representation we find new two-fold complex integration transformation about the Wigner operator (in its entangled form) in phase space quantum mechanics and its inverse transformation. In this way, some operator ordering problems can be solved and the contents of phase space quantum mechanics can be enriched.Comment: 8 pages, 0 figure

    Spontaneous phase oscillation induced by inertia and time delay

    Full text link
    We consider a system of coupled oscillators with finite inertia and time-delayed interaction, and investigate the interplay between inertia and delay both analytically and numerically. The phase velocity of the system is examined; revealed in numerical simulations is emergence of spontaneous phase oscillation without external driving, which turns out to be in good agreement with analytical results derived in the strong-coupling limit. Such self-oscillation is found to suppress synchronization and its frequency is observed to decrease with inertia and delay. We obtain the phase diagram, which displays oscillatory and stationary phases in the appropriate regions of the parameters.Comment: 5 pages, 6 figures, to pe published in PR

    Quantitative Description of V2O3V_2O_3 by the Hubbard Model in Infinite Dimensions

    Full text link
    We show that the analytic single-particle density of states and the optical conductivity for the half-filled Hubbard model on the Bethe lattice in infinite dimensions describe quantitatively the behavior of the gap and the kinetic energy ratio of the correlated insulator V2O3V_2O_3. The form of the optical conductivity shows ω3/2\omega^{3/2} rising and is quite similar to the experimental data, and the density of states shows ω1/2\omega^{1/2} behavior near the band edges.Comment: 9 pages, revtex, 4 figures upon reques

    Fresnel operator, squeezed state and Wigner function for Caldirola-Kanai Hamiltonian

    Full text link
    Based on the technique of integration within an ordered product (IWOP) of operators we introduce the Fresnel operator for converting Caldirola-Kanai Hamiltonian into time-independent harmonic oscillator Hamiltonian. The Fresnel operator with the parameters A,B,C,D corresponds to classical optical Fresnel transformation, these parameters are the solution to a set of partial differential equations set up in the above mentioned converting process. In this way the exact wavefunction solution of the Schr\"odinger equation governed by the Caldirola-Kanai Hamiltonian is obtained, which represents a squeezed number state. The corresponding Wigner function is derived by virtue of the Weyl ordered form of the Wigner operator and the order-invariance of Weyl ordered operators under similar transformations. The method used here can be suitable for solving Schr\"odinger equation of other time-dependent oscillators.Comment: 6 pages, 2 figure

    Wigner functions of thermo number state, photon subtracted and added thermo vacuum state at finite temperature

    Full text link
    Based on Takahashi-Umezawa thermo field dynamics and the order-invariance of Weyl ordered operators under similar transformations, we present a new approach to deriving the exact Wigner functions of thermo number state, photon subtracted and added thermo vacuum state. We find that these Wigner functions are related to the Gaussian-Laguerre type functions of temperature, whose statistical properties are then analysed.Comment: 10 pages and 2 figure
    • …
    corecore